	1.	Number: Code No.: 8203M	
<u></u>	ľ	VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. I Year (Mechanical) II-Semester (Make Up) Examinations, Sept./Oct 2015 (Advanced Design and Manufacturing)	
		Computer Aided Mechanical Design and Analysis Time: 3 hours Max. Marks: 70	
		Note: Answer ALL questions in Part-A and any FIVE questions from Part-B	
		Part-A (10 X 2=20 Marks)	
	1.	Show the following components on a neatly drawn sketch of a pressure vessel. a) Dished end b) Nozzle c) Saddle.	
	2.	Write a note on the various materials used for pressure vessels used under corrosive environment.	
ě	3.	List the boundary conditions for a rectangular plate clamped on all edges.	
	4.	Examine thermal effects considered in the theory of flat plates.	
	5.	Explain the modes of fracture failure.	
	6.	Explain J-Integral. Describe its features.	
	7.	Evaluate the Eigen values and associated eigenvectors of the matrix [A] given by $ \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} $	
	8.	Explain sturm sequence.	
	9. 10.	Differentiate between time integration method and mode superposition method. Describe the ill condition for stability of dynamic system.	
		Part-B (5 X 10=50 Marks)	
	11.	a) Develop the Lame's expressions for stresses in thick pressure vessel subjected to	
		internal pressure.	[5]
		b) Develop the equations for radial and tangential stresses in a cylindrical pressure vessel on which another cylindrical vessel is shrunk on.	[5]
	12.	a) Obtain the equilibrium equation for the pure bending of a circular plate of constant thickness.	[5]
		b) A rectangular plate having dimensions of 500 mm x 400 mm and thickness 10 mm is simply supported at the ends. It is subjected to a uniformly distributed load of 10 MPa. Estimate the deflection of the plate at the middle point, given that	
		$E=2 \times 10^5 \text{ N/Sq.mm}$ and $v=0.3$.	[5]
	13.	a) Show step by step procedure for an expression for the stress required to advance the crack under plane stress and plane strain condition.	[5]
		b) A large plate of 10 mm thickness with an edge crack of 20 mm length is pulled slowly. If the surface energy/ area is 10 ⁶ N/mm. Estimate the stress required to advance the crack under	
		(i) Plane stress and (ii) plane strain condition. Assume E = 200 GPa, v= 0.3	[5]

	Give a critical review of the computational efforts involved in a) Subspace iteration b) Lanczo's methods.	[5] [5]
15.	a) Solve the problem $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \{\ddot{q}_t\} + \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \{q_t\} = \{F(t)\}$ with initial conditions $q_0 = \{ 1 \\ 0 \}$, $\dot{q}_0 = \{ 0 \\ 0 \}$ and $F(0) = 0$, using Newmark method and choose $\Delta_t = 0.25$. b) Draw the response curve for the above behavior.	[8] [2]
16.	Explain the following: a) Bending of a plate in two perpendicular directions b) Energy release rate of DCB Specimen	[5] [5]
17.	 a) Component mode synthesis b) Limitations of using the central difference method for the direct integration of the dynamics equation involving the matrices [M], [C] and [K] c) The procedure to estimate the natural frequencies of stepped beam 	[5] [5]
